If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+5=229
We move all terms to the left:
8x^2+5-(229)=0
We add all the numbers together, and all the variables
8x^2-224=0
a = 8; b = 0; c = -224;
Δ = b2-4ac
Δ = 02-4·8·(-224)
Δ = 7168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7168}=\sqrt{1024*7}=\sqrt{1024}*\sqrt{7}=32\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{7}}{2*8}=\frac{0-32\sqrt{7}}{16} =-\frac{32\sqrt{7}}{16} =-2\sqrt{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{7}}{2*8}=\frac{0+32\sqrt{7}}{16} =\frac{32\sqrt{7}}{16} =2\sqrt{7} $
| 40x=5x-10 | | (50-2x^2)(40-2x^2)=1496 | | (x+2)/8=-8 | | 7x-8=3x*12 | | −24=−6p | | 3v-2v+v=20 | | 8q+-6q=-8 | | (5p-8)/2=(7p+4)/6 | | (x+2)/2=-3 | | 19p-11p-7p-17=20 | | 2(z-6)+4=20 | | 8−a=17 | | 7x-2x=8x | | 2(y-10)=8 | | 17-3x+9=-2x-6x | | 4(j-12)-6=6 | | 4+a=2a | | 6=-3x+39= | | -2(s+9)=-10 | | x^2+(2x+10)^2=625 | | 5b+-16b=-11 | | 10000=200-5x^2 | | 9x+3=-7x+8 | | 28n+122=146 | | 12k-9k=-15 | | x+x-27=96 | | 2t+2(t+200)=1100 | | 9n+1=2-6N | | x^2+(x+10)^2=25^2 | | 2t+2(t+200)=1,100 | | -6g+7g=13 | | 66+n-8=122 |